首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   1篇
化学   141篇
晶体学   1篇
力学   2篇
数学   6篇
物理学   12篇
  2021年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   6篇
  2011年   9篇
  2010年   3篇
  2008年   6篇
  2007年   11篇
  2006年   14篇
  2005年   19篇
  2004年   7篇
  2003年   2篇
  2002年   5篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1965年   1篇
  1964年   2篇
排序方式: 共有162条查询结果,搜索用时 984 毫秒
41.
Design of nanohybrid systems possessing several ruthenium trisbipyridine (Ru(bpy)(3)(2+)) chromophores on the surface of gold nanoparticles, by adopting a place exchange reaction, was reported and their photophysical properties were tuned by varying the density of chromophores. The charge shift between the excited and ground-state Ru(bpy)(3)(2+) chromophores was reported for the first time, leading to the formation of Ru(bpy)(3)(+) and Ru(bpy)(3)(3+). Electron-transfer products were not observed on decreasing the concentration of Ru(bpy)(3)(2+) functionalized on Au nanoparticles or in a saturated solution of unbound chromophores. The close proximity of the chromophores on periphery of the gold core may lead to an electron transfer reaction and the products sustained for several nanoseconds before undergoing recombination, probably due to the stabilizing effect of the polar ethylene glycol moieties embedded between the chromophore groups.  相似文献   
42.
Photoinduced electron transfer between chlorophyll a and gold nanoparticles   总被引:3,自引:0,他引:3  
Excited-state interactions between chlorophyll a (Chla) and gold nanoparticles have been studied. The emission intensity of Chla is quenched by gold nanoparticles. The dominant process for this quenching has been attributed to the process of photoinduced electron transfer from excited Chla to gold nanoparticles, although because of a small overlap between fluorescence of Chla and absorption of gold nanoparticles, the energy-transfer process cannot be ruled out. Photoinduced electron-transfer mechanism is supported by the electrochemical modulation of fluorescence of Chla. In absence of an applied bias, Chla cast on gold film, as a result of electron transfer, exhibits a very weak fluorescence. However, upon negatively charging the gold nanocore by external bias, an increase in fluorescence intensity is observed. The negatively charged gold nanoparticles create a barrier and suppress the electron-transfer process from excited Chla to gold nanoparticles, resulting in an increase in radiative process. Nanosecond laser flash experiments of Chla in the presence of gold nanoparticles and fullerene (C60) have demonstrated that Au nanoparticles, besides accepting electrons, can also mediate or shuttle electrons to another acceptor. Taking advantage of these properties of gold nanoparticles, a photoelectrochemical cell based on Chla and gold nanoparticles is constructed. A superior performance of this cell compared to that without the gold film is due to the beneficial role of gold nanoparticles in accepting and shuttling the photogenerated electrons in Chla to the collecting electrode, leading to an enhancement in charge separation efficiency.  相似文献   
43.
Novel organic solar cells have been prepared using quaternary self-organization of porphyrin (donor) and fullerene (acceptor) units by clusterization with gold nanoparticles on nanostructured SnO2 electrodes. First, porphyrin-alkanethiolate monolayer-protected gold nanoparticles (H2PCnMPC: n is the number of methylene groups in the spacer) are prepared (secondary organization) starting from the primary component (porphyrin-alkanethiol). These porphyrin-modified gold nanoparticles form complexes with fullerene molecules (tertiary organization), and they are clusterized in acetonitrile/toluene mixed solvent (quaternary organization). The highly colored composite clusters can then be assembled as three-dimensional arrays onto nanostructured SnO2 films to afford the OTE/SnO2/(H2PCnMPC+C60)m electrode using an electrophoretic deposition method. The film of the composite clusters with gold nanoparticle exhibits an incident photon-to-photocurrent efficiency (IPCE) as high as 54% and broad photocurrent action spectra (up to 1000 nm). The power conversion efficiency of the OTE/SnO2/(H2PC15MPC+C60)m composite electrode reaches as high as 1.5%, which is 45 times higher than that of the reference system consisting of the both single components of porphyrin and fullerene.  相似文献   
44.
Poly(p-phenylene sulfide) films coated on conducting SnO2 and Pt surfaces were found to attain p-type semiconducting properties on electrochemical cycling. Upon illumination of these films with visible light (λ < 500 nm) a photoelectrochemical effect was observed. The performance of a photoelectrochemical cell employing this polymer film coated electrode is discussed.  相似文献   
45.
Ordered assemblies of protonated porphyrin in the form of J- and H-type aggregates have been achieved on the single-wall carbon nanotube (SWCNTs) surface. This unusual molecular aggregation phenomenon driven by SWCNTs further enables macroscopic assembly in the form of linear bundles.  相似文献   
46.
Hydroxyl radical reactions of selected chlorinated aromatic phenols (2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) and chlorinated phenoxyacetic acids [2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-D methyl ester, 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP)] were studied using the radiolysis techniques of pulse radiolysis and gamma radiolysis. Hydroxyl radical addition was the prominent reaction pathway for the chlorinated phenoxyacetic acids and also for the chlorinated phenols at pH values below the pK(a) of the compounds. A very prominent change in (*)OH reactivity was observed with the chlorinated phenoxide ions in high pH solutions. Two different reaction pathways were clearly present between the hydroxyl radical and the chlorinated phenoxide ions. One of the reaction pathways was suppressed when the concentration of chlorinated phenoxide ions was increased 10-fold. Amid a greater electron-withdrawing presence on the aromatic ring (higher chlorinated phenoxide ions), the hydroxyl radical reacted preferably by way of addition to the aromatic ring. Steady-state experiments utilizing gamma radiolysis also showed a substantial decrease in oxidation with an increase in pH of substrate.  相似文献   
47.
The mechanistic details of the hydroxyl radical-induced transformations of quinoline have been elucidated. The nature and distribution of the final products have provided insight into the preferential attack of the hydroxyl radicals at different sites on the aromatic rings. Hydroxylated products at all of the carbon atoms but one, C2, have been observed and quantified following controlled radiolysis of N2O-purged aqueous quinoline solutions. The difference in the growth pattern and the lifetime of the monohydroxylated products under radiolytic conditions, as well as the formation of high-molecular-weight products (e.g., quinoline dimers), shows the complexity of the OH reaction pathways. The radiolytic yields (G values) for the degradation of the quinoline and the formation of the hydroxylated products are calculated in the absence and in the presence of an oxidant, K3Fe(CN)6. The addition of K3Fe(CN)6 changes only the distribution of the hydroxylated products. These experiments indicate that the nature of the hydroxylated products is determined in the initial addition step of the reaction of the hydroxyl radical with quinoline, whereas the chemistry of the OH adducts is relevant to the distribution of the final products. The discrepancy between the products of -radiolysis and the photo-Fenton reaction of quinoline is also discussed.  相似文献   
48.
Oxidative transformations by the hydroxyl radical are significant in advanced oxidation processes for the breakdown of organic pollutants, yet mechanistic details of the reactions are lacking. A combination of experimental and computational methods has been employed in this study to elucidate the reactivity of the hydroxyl radical with the widely used herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). The experimental data on the reactivity of the hydroxyl radical in the degradation of the herbicide 2,4-D were obtained from gamma-radiolysis experiments with both (18)O-labeled and unlabeled water. These were complemented by computational studies of the (.)OH attack on 2,4-D and 2,4-DCP (2,4-dichlorophenol) in the gas phase and in solution. These studies firmly established the kinetically controlled attack ipso to the ether functionality as the main reaction pathway of (.)OH and 2,4-D, followed by homolytic elimination of the ether side chain. In addition, the majority of the early intermediates in the reaction between the hydroxyl radical and 2,4-DCP, the major intermediate, were identified experimentally. While the hydroxyl radical attacks 2,4-D by (.)OH-addition/elimination on the aromatic ring, the oxidative breakdown of 2,4-DCP occurs through (.)OH addition followed by either elimination of chlorine or formation of the ensuing dichlorophenoxyl radical.  相似文献   
49.
Several plant products are known to exhibit immense medicinal value against human diseases. Our earlier studies showed that dry stem crude extract (DSCE) ofTinospora cordifolia contained a polyclonal B cell mitogen, G1-4A. DSCE as well as G1-4A also enhanced immune response in mice. In order to explore the possibility of using G1-4A/PPI (partially purified immunomodulator) to modulate radiation induced immunosuppression, the antioxidant effect of PPI from this plant was examined against reactive oxygen and nitrogen species (ROS/RNS), generated by photosensitization/peroxynitrite. Levels of lipid peroxidation products, superoxide dismutase (SOD) and catalase in liver/spleen homogenate from mouse were monitored. Photosensitization induced significant increase in thiobarbituric acid reactive substances (TBARS) in liver. The activities of SOD and catalase were reduced considerably. PPI, present during photosensitisation, prevented lipid peroxidation and restored the activities of both the enzymes. Likewise, oxidative damage induced by peroxynitrite was inhibited by PPI. The degradation of proteins due to photosensitization as assessed by SDS-PAGE was effectively reduced by simultaneous treatment with PPI during photosensitization. Selective inhibitors of ROS like mannitol, SOD, sodium azide and antioxidants, GSH and vitamin C brought about significant inhibition of formation of TBARS suggesting possible involvement of O2 ,OH and1O2. Photosensitization in deuterated buffer enhanced formation of TBARS thus indicating generation of1O2. Thus, the action of PPI may be against oxidative damage through Type I and II photosensitization mechanisms. Therefore, the immunomodulator fromTinospora cordifolia may also be beneficial as an antioxidant.  相似文献   
50.
Summary This note describes an interesting property of the mean deviation which holds for a number of commonly known discrete distributions. The property is also examined for some of the well-known continuous distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号